Mark Scheme 4726 January 2006

$$
\text { 1(i) Use standard } \begin{aligned}
\ln (1+3 x) & =3 x-\frac{(3 x)^{2}}{2}+\frac{(3 x)^{3}}{3} \\
& =3 x-9 x^{2} / 2+9 x^{3}
\end{aligned}
$$

(ii) Produce $\left(1+x+x^{2} / 2\right)$

Get $3 x-3 x^{2} / 2+6 x^{3}$

M1 Allow e.g. $3 \mathrm{x}^{2}, 2$! etc.
M1 Attempt to simplify $(3 x)^{2}$ etc.
A1 cao
B1
M1 Mult. 2 reasonable attempts, each of 3 terms (non-zero)
AIV From their series
SC M1 Reasonable attempt at diff and replace $x=0$ (2 correct)
Mi $\sqrt{ }$ Put their values into correct Maclaurin expansion
Al cao
(Applies to either/both parts)
B1 Or equivalent
Bl Correct from their $f(x)$
M1 Clear evidence of $\mathrm{N}-\mathrm{R}$ on their f. f'
$\mathrm{Al} \sqrt{ } \mathrm{At}$ least one to $4 \mathrm{~d} . \mathrm{p}$.
A1 cao to 3 d.p.
B1
MIV Equate to their P.F. (e.g. if $\mathrm{B}=0$ or $\mathrm{C}=0$ used)
Use $x=0$ or equiv. for A (or equate coeff.etc.)
Correctly find one of B, C
Get $A=3, B=-3, C=1$

(ii)(a)Converges to $x=\alpha$
(b)Diverges (does not give either root)

5 (i) Give $x=-2$
Attempt to divide out
Get $y=x+1$
(ii) Write as quad. $x^{2}+x(3-y)+(3-2 y)=0$

Use for real $x, \mathrm{~b}^{2}-4 \mathrm{ac} \geq 0$
Produce quad. inequality in y Attempt to solve quad. inequality Get A.G. clearly e.g. graph

M1 $\sqrt{ }$ Include cover-up
A1
Al
B1 Line from x_{1} to curve
B1 Then to line
B1 Clear explanation; allow use of step/staircase

B1, B1
B1
B1
M1 Giving $y \neq x+k$; allow $k=0$ here
Al Must be $=$
M1 SC Differentiate M1
M1 Solve $d y / d x=0 \mathrm{M} 1$
M1 Get $2 x, y$ values correct AI
M1 Attempt at max/min M1
A1 Justify, e.g. graph, constraints on $y \mathrm{~A} 1$

6 (i) Use parts to $\left(-\mathrm{e}^{-x} \cdot x^{n}-\int-\mathrm{e}^{-x} \cdot n x^{n-1} \mathrm{~d} x\right)$
Use limits to get e^{-1}
Tidy correctly to A.G.
(ii) Use $\begin{aligned} I_{3} & =3 I_{2}-\mathrm{e}^{-1} \\ I_{2} & =2 I_{1}-\mathrm{e}^{-1} \\ I_{1} & =I_{0}-\mathrm{e}^{-1}\end{aligned}$

Work out $I_{0}=1-\mathrm{e}^{-1}$ or $I_{1}=1-2 \mathrm{e}^{-1} \quad \mathrm{M} 1, \mathrm{Al}$
Get 6-16 e^{-1}
7 (i) Area under graph $=\int \sqrt{ } x \mathrm{~d} x$

M1 Reasonable attempt e.g. $+\mathrm{e}^{-x}$
Al cao
B1 Allow \pm
A1
B1 One such seen

A1
B1 Explain RHS (limits need not be specified)
$>$ Sum of areas of rectangles from 1 to $N+1 \quad \mathrm{~B} 1$
Area of each rect. $=$ Width \times Height $=1 \times \sqrt{x} \quad$ B1
(ii) Similarly, area under curve from 0 to $N \quad$ B1
$<$ sum of areas of rect. from 0 to $N \quad$ Bl
Clear explanation of A.G. B1
(iii) Integrate $x^{0.5}$ and use 2 different sets of limits M1,M1

Get area between ${ }^{2} / 3\left((N+1)^{1.5}-1\right)$ and ${ }_{2} / 3 N^{1.5}$

8 (i) Max. $r=2$ at $\theta=0$ and π
(ii) Solve $r=0$ for θ, giving $\theta=1 / 2 \pi$ and $3 / 2 \pi$
(iii) Use correct formula with correct r

Expand r
Get $\int \mathrm{A}+\mathrm{B} \cos 2 \theta+\mathrm{C} \cos 4 \theta \mathrm{~d} \theta$ Integrate their expression correctly Get $3 \pi / 8$
(iv) Express $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$ or similar Use $\cos \theta=x / r$ and $/$ or $\sin \theta=y / r$
Simplify to $\left(x^{2}+y^{2}\right)^{1.5}=2 x^{2}$ or similar
9
(i) Correct deff of $\cosh x$ and $\sinh x$

Expand 2.1/2 $\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right) .1 / 2\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$
Clearly get $1 / 2\left(e^{2 x}-\mathrm{e}^{-2 x}\right)$ to A.G.
(ii) Attempt to diff. and solve $\mathrm{d} y / \mathrm{d} x=0$

Use (ii) to get $\mathrm{A} \cosh x(\mathrm{~B} \sinh x+\mathrm{C})=0$
Clearly see $\cosh x>0$ or similar for one useable factor only
Attempt to solve $\sinh x=-\mathrm{C} / \mathrm{B}$
Get $x=\ln ((3+\sqrt{13}) / 2)$
Justify one answer only for $\sinh x=-\mathrm{C} / \mathrm{B}$
Accurate test for MINIMUM

A1

$\mathrm{B} 1, \mathrm{~B} 1$ Two θ needed (rads only); ignore θ out of range

M1,Al Two θ needed (rads only); ignore θ out of range

M1
M1
M1 $\mathrm{C} \neq 0$
M1V
A1 cao
M1
M1
M1,A1
B1,B1
M1 Reasonable attempt
A1
M1 Reasonable attempt
M1
B1
Ml Quote or via e^{-x} correctly
A1
B1
B1 First or second diff test with numeric evidence
B1 Correct value(s) for min.

